Files
Labview-Program/SPL Project/SupportVIs/RealMatrix.ctl

80 lines
20 KiB
Plaintext
Raw Normal View History

2025-09-10 13:59:40 +08:00
RSRC
LVCCLBVWJ<> J<>NI_Matrix.lvlib<00><00> <<00>@<40><06><><EFBFBD><EFBFBD><00>A1<41><31>~;L<>݂mS<6D><53><EFBFBD> ,Jf<4A>M<EFBFBD>F<EFBFBD> !6<17>gz<67><1D>ُ<00><04><> <09><><EFBFBD>B~<00><><EFBFBD><EFBFBD><LVCCVILBPTH0dataNI_Matrix.lvlib(6x<36>c<EFBFBD>c`j`<60><>ČL L@<40><10>A<EFBFBD>*<2A><>~<7E><0E>Ix<>c`<60><04><>H1200]<00>,h<>`Ʀ&<26>e..<2E><><EFBFBD><EFBFBD>P7<50>„<EFBFBD><C284><EFBFBD><03><>@rP5P?0<><01>HFp'<16><01><>(9 VIDS~x<><78>SAhA<14><>,e<><65>]%J.<2E>hY <0C>@<0E>& l<><6C>BD-<2D><><EFBFBD>` 11<31> tzx<10>yPz<50><7A>)i
<EFBFBD>\<5C><>x))<08>C<EFBFBD><43>A<EFBFBD><41><EFBFBD><EFBFBD>$<24><><1C><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>?<><7F><EFBFBD><08>;;}.<2E>C<EFBFBD>'!t U<><55>w<>D<>#o)
<EFBFBD><EFBFBD>5'Ο<><CE9F>7[<5B><<3C><>vb<76><62>V_<56>)C<><19>r<EFBFBD>O3<4F><33>d <0C>(<28><>_<EFBFBD><5F>Z[j<>^<5E>o<EFBFBD>O0_<30><5F><EFBFBD>Sf
H^<5E><>]b^<5E>xs WVN<56><4E>b<EFBFBD>r<1D><12><><EFBFBD>Ð<EFBFBD><C390><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>k VӴN1<4E>Ҹ<>+$<24><>Z<16><>w<>Y<EFBFBD><59>H=<00>ԣ|<7C>1>N<>SLk<4C>a<EFBFBD><61><EFBFBD>y<EFBFBD>5frL<72><16><>+S#<1D><><10><07>-.= i<17><><EFBFBD>%L֦Y<D6A6><59>B<EFBFBD><42><EFBFBD>w<EFBFBD><77><EFBFBD>I<EFBFBD>'<27><14>&<26><01><>54<35><34><EFBFBD>h<EFBFBD>'<27> u^<5E><><EFBFBD>R<><52> <0A><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>8)R<><52>W1<57>m<EFBFBD>L<EFBFBD>9<EFBFBD><39><EFBFBD>ʯ&y<17>'9f<39>̒f
D<EFBFBD>-<2D>T{<7B>mx<0E><44><DE8D><EFBFBD>t<19>Cy-<2D>-<2D>y<18>6<EFBFBD><36><EFBFBD><EFBFBD><EFBFBD>?<1E>Z<EFBFBD>*<7[N<>*<2A><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>t<EFBFBD><74>u<EFBFBD>t<EFBFBD>Q<EFBFBD><51><EFBFBD>.<2E>k宵#Y[<5B><><EFBFBD><EFBFBD>7<EFBFBD>Q{<7B><><EFBFBD><EFBFBD>?+<2B>I|kO<6B><0E>J<EFBFBD><4A>I;<3B><><EFBFBD>A<EFBFBD><41>Ɓ<>é<EFBFBD><C3A9>y<EFBFBD>O[0tc<><63><EFBFBD>t܇N<DC87><4E> oG<6F><47><EFBFBD>%O<>xb<78><62>&<26>P(<28>3<EFBFBD><33>W<EFBFBD><57>[<5B>>yl<79><6C><EFBFBD>1<EFBFBD><08><><EFBFBD>m* [<02>,<2C><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>;<3B>*<2A><><EFBFBD> <20>$<04><><EFBFBD><EFBFBD><>j<EFBFBD><6A>^<07>(<28>3<EFBFBD>Q<EFBFBD><51>/@<40><> xY<78><59><05>0<EFBFBD>J<EFBFBD>]g<><67><EFBFBD>j!<21><> <00>$15.0 <00>15.0 <00>$15.0 <00>15.0 <00>$15.0 %PTH0 <helpdir>lvconcepts.chmUsing_Matrices.html<00><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><00><><00><><00><><00><><00><><EFBFBD><EFBFBD><00><><EFBFBD><EFBFBD><00><><00><><00><><00><><00><><00><><00><><00><><00><00><00><00><00><00><00><><00><><00><><00><00><00><00><><00><><00><><00><00><00><00><><00><><00><><00><00><00><00><00><00><00><><00><><00><><00><><00><><00><><00><><00><><00><><00><00><00><00><00><00><00><><00><><00><><00><00><00><00><><00><><00><><00><00><00><00><><00><><00><><00><00><00><00><00><00><00><><00><><00><><00><><00><><00><><00><><00><><00><><00><00><00><00><00><00><00><><00><><00><><00><00><00><00><><00><><00><><00><00><00><00><><00><><00><><00><00><00><00><00><00><00><><00><><00><><00><><00><><00><><00><><00><><00><><00><><00><><00><><EFBFBD><EFBFBD><00><><EFBFBD><EFBFBD><00><><00><><00><><00><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> FPHP <09>x<EFBFBD><78>VKoW>w<><77>w<1C>\;$<24>H?<3F>6Nd<4E><64><EFBFBD><EFBFBD><EFBFBD>R<EFBFBD>0<EFBFBD>
<02><12>>6(`<60>P)Hi<48><69><EFBFBD> u<1A>RYT<59><54><EFBFBD><EFBFBD>2٢(R+<2B><>Z!7<><37><EFBFBD> XL<58>e<13><><EFBFBD>ùw<<0F>y<08> <20><><EFBFBD>G<EFBFBD>;<3B><><EFBFBD>;<3B><>P<>٠Ҁl l7Gl<47>ULP/Qh<51><68><EFBFBD><EFBFBD>M<EFBFBD><4D>@<40>jĆ):<3A><>) 2dÖ<64><C396><EFBFBD>e<EFBFBD><0F><><EFBFBD><EFBFBD>r<EFBFBD><72><EFBFBD><EFBFBD>N<EFBFBD>a<EFBFBD><61> <0A>3?<3F>-<2D>o<0E>5槍<35>6v<36>4<EFBFBD>/x<>!<21>n\Š`<14>/<2F>=<13><1A>ə<EFBFBD>U<EFBFBD><55><EFBFBD>j<EFBFBD>j2<6A>j<03><><EFBFBD>Yn<59><6E>)<29><>L<EFBFBD><14>2<EFBFBD>n<EFBFBD>LY<4C><59><EFBFBD><EFBFBD>wAy<04><>~Đeɷ<65>LB7<42>}˭b<CBAD><1D><14>!%HO5~<15><05>ۧ<> <0C>X<EFBFBD><58>לe<D79C><65><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ٰ<EFBFBD>[<5B>T<EFBFBD><54>+w<>ݟ@2<>mǩ<><C7A9><EFBFBD>_ο<5F>e8~L<>! $7J<37><14><><EFBFBD>0"j<><6A>O<EFBFBD>g<EFBFBD>J!b<>E!<21><>R5b<18>8<EFBFBD>b!<21>
1<>ٮ<EFBFBD>ՙ <0B><>3s<33><73>/<2F><>2iC<69>bRmV<6D>R<EFBFBD>|<7C><><EFBFBD><EFBFBD>ym<79>(QİO`Xr鐱<72>6쮘Q ňI.<2E><><EFBFBD><EFBFBD>L!<21><35>mnnb<6E>pu<70><19>U .<2E><>%c.<2E><>|<7C>Ia<49> e<><65><EFBFBD>r+"<22><><EFBFBD> {<7B><><10>`<60><><EFBFBD>Ūk<<3C>T<14><>F$]O<><4F>؃!i<19>+<2B>6<EFBFBD>=E<>"<22><><EFBFBD> <18><>ӡj*`<60><>e<EFBFBD><65><EFBFBD>x<EFBFBD><78>ds<64><73>ٜ~<7E> <0A><>^d<>=<3D><>vG<76>3<><33>q%<25>G<EFBFBD>l0<6C><30><EFBFBD><澄<>W<EFBFBD>?:q^LfnT<6E><54>+<2B><><EFBFBD><EFBFBD>򪫼/;<3B><1C>V<EFBFBD><56><EFBFBD><EFBFBD><EFBFBD><EA9B97>[%<25><>n<EFBFBD>o<EFBFBD><6F><EFBFBD><1F><>=Ȏ<>?<3F>ԟsk;<1E><>:<<3C>C1l<31>m<EFBFBD>q [$<24>1<18>$<24>`[<5B>`ii <09><>؏В]<5D>W=<3D>O<EFBFBD>"b<0F>XK<58>q<17><>T<EFBFBD><54>c| f<>zm1}<7D>GL<47><4C>,"Ư<><C6AF><EFBFBD><EFBFBD><EFBFBD>ؘ<EFBFBD>P<EFBFBD><50><EFBFBD>e<EFBFBD><65><EFBFBD><EFBFBD>{><11><>9<EFBFBD><39><EFBFBD><EFBFBD>|D<>;<3B>hW sLa<10><>L<>w,<2C><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>6ִy<D6B4>93_<33><5F><EFBFBD>;<3B><>u<EFBFBD><75><EFBFBD><EFBFBD>ͧ'.T<><54>^<5E>k<EFBFBD><6B>. <<3C>(<28>z<EFBFBD>2ԝ-<2D>^<5E>t<EFBFBD>!<07>CL<43>8<EFBFBD><38><EFBFBD>;<3B>r<EFBFBD>;<3B><>ڗ<><DA97><EFBFBD><EFBFBD>Bc<42><63><EFBFBD><EFBFBD><EFBFBD>`$<24>9Bw <0A>k<EFBFBD><6B><16><><EFBFBD>]<5D><><EFBFBD><01>O4\<5C><><EFBFBD>8y6<79><36>d<EFBFBD><64>]'ܾwଯ<77><E0ACAF><EFBFBD><EFBFBD><EFBFBD><02>e<EFBFBD>Uo<55><6F>/Ft<46><74>P<><50>H<EFBFBD>/<2F>~<7E>Js <0A><08>H$C<><43>t<EFBFBD><74><1E>X<EFBFBD>M<EFBFBD><4D>־<EFBFBD><D6BE><EFBFBD> $vՆ~<7E>`<60>vH|<7C><>!:<3A>n<EFBFBD><6E> o`<03>ݨ<><DDA8>o\<5C>#>ҸM<D2B8><4D>*<2A>-<2D>Ft<>>?<3F><>/ BDHPeux<75>c``(<14>`<60><>P<EFBFBD><50><EFBFBD>I<EFBFBD>+<2B>!<21><><EFBFBD><59>7<03><><EFBFBD>a <20>( <14><><EFBFBD><EFBFBD>.<2E> <16>><3E><><EFBFBD><05>l<EFBFBD><1C><1C>9<>2- <0C><><EFBFBD>W)b<><62>z<EFBFBD>\<5C>8Se<53><<3C>e<19>;M Localized,<00>@0<><30><EFBFBD><EFBFBD>TagNameLocalizeNI.LV.All.OperatorInfo1:<3A><00>Y<00>OO_ImpTypesEnum.ctl=@PrimVIPolyVI ExpressVIXNode ExternalNodeType@2<><32><EFBFBD><EFBFBD>Path:<00><><EFBFBD><EFBFBD>OO_ImplementerID2.ctl@P ImplementerID @Numeric@@<01><><EFBFBD><EFBFBD>TermMap@0<><30><EFBFBD><EFBFBD>String@@<01><><EFBFBD><EFBFBD>TermTDs @NDims@ NPolySubVIsO<00><><EFBFBD>YEOO_ImplementerListEntry2.ctl*@PImplementerListEntry@@<01><><EFBFBD><EFBFBD> Implementers@ PrimResID @OpFlags6񽈂<>OO_ImplementerRow.ctl@P
Cluster@@<01><><EFBFBD><EFBFBD> EntryList @!PrimsOk @Vers2<00><>O<EFBFBD>VOO_CTLInfo2.ctl@P OverloadsPTH0)NumericComplexComplex To Polar.vi<00>``@ Complex Matrix Element@<00>NI_Matrix.lvlibComplexMatrix.ctl&@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix r*e^iQu``@
Real Matrix Element2<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Modulus rw``@
Real Matrix Element4<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
Argument Q``@
Real Matrix Element<<00>NI_Matrix.lvlibRealMatrix.ctl$@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Real Matrix r*e^i0u``@
Real Matrix Element2<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Modulus r{``@
Real Matrix Element8<00>NI_Matrix.lvlibRealMatrix.ctl @@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Argument Q (0)PTH0"NumericSubtract Subtract.vix``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A - c6``@ Complex Scalar c<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A - B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>c - A<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A6``@ Complex Scalar cq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A - By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Aq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A - c*``@
Real Scalar cy``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Aq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>c - Ay``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix A*``@
Real Scalar cPTH0"NumericMultiply Multiply.viq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A * By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Aq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A * c*``@
Real Scalar cy``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Aq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>c * Ay``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix A*``@
Real Scalar cx``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A * B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A * c6``@ Complex Scalar c<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>c * A<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A6``@ Complex Scalar cPTH0-NumericComplexCartesian To Complex.vi z``@ Complex Matrix Element2<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>R + Iiy``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Iy``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Rz``@ Complex Matrix Element2<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>R + ki*``@
Real Scalar ky``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Rz``@ Complex Matrix Element2<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>r + Iiy``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix I*``@
Real Scalar rPTH0)NumericComplexPolar To Complex.vi <00>``@ Complex Matrix Element@<00>NI_Matrix.lvlibComplexMatrix.ctl&@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix r*e^iQw``@
Real Matrix Element4<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
Argument Qu``@
Real Matrix Element2<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Modulus r<00>``@ Complex Matrix Element@<00>NI_Matrix.lvlibComplexMatrix.ctl&@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix r*e^iQ.``@
Argument Scalar Qu``@
Real Matrix Element2<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Modulus r<00>``@ Complex Matrix Element@<00>NI_Matrix.lvlibComplexMatrix.ctl&@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix r*e^iQw``@
Real Matrix Element4<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
Argument Q.``@
Modulus Scalar rPTH0&Numeric
Power Of X Power Of X.viv``@ Complex Matrix Element.<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A^n<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A `` @Power no``@
Real Matrix Element,<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A^ny``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix A `` @Power n<04>PTH0.NumericAbsolute ValueAbsolute Value.vio``@
Real Matrix Element,<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>|A|y``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Ao``@
Real Matrix Element,<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>|A|<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix APTH0(Numeric Square RootSquare Root.viz``@ Complex Matrix Element2<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>sqrt(A)<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Az``@ Complex Matrix Element2<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>sqrt(A)y``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix A$PTH04NumericNatural LogarithmNatural Logarithm.vix``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ln(A)<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ln(A)y``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix A<04>PTH0(Numeric ExponentialExponential.vio``@
Real Matrix Element,<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>e^Ay``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Av``@ Complex Matrix Element.<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>e^A<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A<04>PTH0
ComparisonEqualEqual.vi`` @!A = B?<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A`` @!A = B?y``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix ANPTH0'
Comparison Not Equal Not Equal.vi`` @!A != B?<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A`` @!A != B?y``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix AQPTH0-NumericComplexComplex To Cartesian.vi<00>``@ Complex Matrix Element@<00>NI_Matrix.lvlibComplexMatrix.ctl&@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix R + Iiy``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Ry``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix I``@
Real Matrix Element<<00>NI_Matrix.lvlibRealMatrix.ctl$@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Real Matrix R + 0iy``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix R}``@
Real Matrix Element:<00>NI_Matrix.lvlibRealMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Real Matrix I (0)PTH0NumericAddAdd.viq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A + c*``@
Real Scalar cy``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Aq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>c + Ay``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix A*``@
Real Scalar cx``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A + c6``@ Complex Scalar c<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>c + A<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A6``@ Complex Scalar cq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A + By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A + B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A<07>KLMN<00>(<00><01>x<EFBFBD>}<7D>]J<>@<14><>db<64><62><EFBFBD>G[<5B><><EFBFBD><EFBFBD><EFBFBD>70/U|PJ7<4A><37>I<EFBFBD>0Z<30>(}tɺ=cFT<04>a.<2E><><EFBFBD>;<3B>!G6g<<3C><16><>\4<><34>M1u<31>}<7D><>p<EFBFBD><1B><>ë<EFBFBD><C3AB>6{<7B><><EFBFBD><EFBFBD>v<EFBFBD>냰l<1C><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>c[9%D<><44>"&PNI<4E><49>S<>;2<>b<EFBFBD><62><EFBFBD><15>u<EFBFBD><75><EFBFBD>T<EFBFBD>!%3Oe<4F><65>&<26><16><>ٔ<EFBFBD>g<EFBFBD>ۥ<EFBFBD><DBA5><EFBFBD>g<EFBFBD><67>u<EFBFBD><75> <20>F$<24><><EFBFBD>`<60>Pi<50><69><EFBFBD>/<2F><><7F><EFBFBD><EFBFBD>'<27><>D<EFBFBD>*Z<><5A>G!J%<25><><EFBFBD><EFBFBD>1
<EFBFBD><EFBFBD>3<16>ʄ<EFBFBD><CA84><EFBFBD><EFBFBD>}<7D>^<5E>E<EFBFBD>eH<00><00>Q<00><00>Z<00><00>c<><00><00><00><00>Segoe UISegoe UISegoe UI0RSRC
LVCCLBVWJ<> J<> 4LIBNTLVSRhRTSG|CCST<01>LIvi<01>CONP<01>TM80<01>DFDS<01>LIds<01>VICDversGCPR<02>HLPP<02>HLPT<02>icl8<02>LIfp<02>FPHb<02>FPSE<02>VPDP LIbd BDHb4BDSEHVITS\DTHPpMUID<03>HIST<03>VCTP<03>FTAB<03><00><><EFBFBD><EFBFBD><00><><EFBFBD><EFBFBD><00><00><><EFBFBD><EFBFBD><00><00><><EFBFBD><EFBFBD><00><00><><EFBFBD><EFBFBD><00><><EFBFBD><EFBFBD><00><><EFBFBD><EFBFBD><<00><><EFBFBD><EFBFBD><01><00><><EFBFBD><EFBFBD><01><04><><EFBFBD><EFBFBD> <07><><EFBFBD><EFBFBD>0<08><><EFBFBD><EFBFBD>@ <09><><EFBFBD><EFBFBD>P
<EFBFBD><EFBFBD><EFBFBD><EFBFBD>`<00><><EFBFBD><EFBFBD>p<00><><EFBFBD><EFBFBD><04><00><><EFBFBD><EFBFBD><04><00><><EFBFBD><EFBFBD><04><00><><EFBFBD><EFBFBD><08><00><><EFBFBD><EFBFBD><08><00><><EFBFBD><EFBFBD> <00><><EFBFBD><EFBFBD> <00><><EFBFBD><EFBFBD> <00><><EFBFBD><EFBFBD> $<00><><EFBFBD><EFBFBD> <0A><00><><EFBFBD><EFBFBD> <0A><00><><EFBFBD><EFBFBD>H<><00><><EFBFBD><EFBFBD>H<><00><><EFBFBD><EFBFBD>H<><00><><EFBFBD><EFBFBD>I(<00><><EFBFBD><EFBFBD><EFBFBD>JRealMatrix.ctl