Files
Labview-Program/SPL Project/SupportVIs/ComplexMatrix.ctl

71 lines
18 KiB
Plaintext
Raw Normal View History

2025-09-10 13:59:40 +08:00
RSRC
LVCCLBVWBP B0NI_Matrix.lvlib<00><00> <<00>@<40><06><><EFBFBD><EFBFBD><00>*EY<45><59>?M<>gp<67> ]<5D><> <0E>I<EFBFBD><49>+"W<><57><EFBFBD><EFBFBD><1D>ُ<00><04><> <09><><EFBFBD>B~<00><><EFBFBD><EFBFBD><LVCCVILBPTH0dataNI_Matrix.lvlib(6x<36>c<EFBFBD>c`j`<60><>ČL L@<40><10>A<EFBFBD>*<2A><>~<7E><0E>Kx<>c`<60><04><>H1200]<00>,h<>`Ʀ&<26>e..<2E><><EFBFBD><EFBFBD>P7<50>„<EFBFBD><C284><EFBFBD><03><>@rP5P?0<><01>HF00p0qb1<00><>(A VIDSp x<><78>SAkQ~<7E>Y<EFBFBD>S<EFBFBD>Y4<59>
\1<><10>BE<>&(X<>m<>JUPCA <09><><EFBFBD><EFBFBD>6<EFBFBD><36>#<10>C<EFBFBD><43>?<I<><49><EFBFBD>¦<17><><1E><><EFBFBD> $<24><><EFBFBD>(<28>:<3A><>6<EFBFBD><36>|<7C>o<EFBFBD><6F>f<EFBFBD>̼y<CCBC>oeBn<42><6E>J<EFBFBD>|<7C><>$BFI<46>\<5C>s<EFBFBD><73>^:q<>7<0F><>ʊ<EFBFBD><CA8A><EFBFBD><EFBFBD><EFBFBD>f<EFBFBD>+8<><38><EFBFBD>f<EFBFBD><66>Ӛj<D39A><6A><EFBFBD><EFBFBD>R<EFBFBD><52>hA6<41>)L<>><3E><>m<EFBFBD><6D><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>֩i<D6A9><69>x+<2B>QT@*(<28><>zy<7A><79><10><><EFBFBD><0F><><EFBFBD>7<17>V9.<2E><><EFBFBD><EFBFBD> <0B><>ϳO.<2E><><1E><19>S%dhe<68>x<EFBFBD><78><EFBFBD><EFBFBD>(<28>ip<07>S<EFBFBD>|<7C>հE<D5B0>s<>8<EFBFBD><38><EFBFBD>><3E>Z=<3D><>V<EFBFBD><56><EFBFBD><EFBFBD><EFBFBD><EFBFBD>խrD<72><44>*O Pl<50>B<1E><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> i<><69><EFBFBD>Y<EFBFBD>֧0x^<5E>F?<3F><><EFBFBD>4<EFBFBD>H<EFBFBD>5<EFBFBD>͌>k<><15><>)<29><>a<EFBFBD><61><EFBFBD><EFBFBD>ɯl<C9AF><6C><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>><3E>p<>Ux<55><78>M<EFBFBD><4D><EFBFBD>s<EFBFBD>*<2A>{Q<><51>T<EFBFBD><54>s<EFBFBD><73>Q<>W<EFBFBD>V6W<36><57><EFBFBD>:<3A><><EFBFBD><EFBFBD>P}<7D>@T.]9<02>4<EFBFBD><34><<05>S]9`<60>VͶ:[<5B>~<>P3<50>>)>՛<><D59B><EFBFBD><EFBFBD>#<23><><EFBFBD><EFBFBD><EFBFBD>N<03>$<24>i<EFBFBD><1B><><EFBFBD>ˋ<EFBFBD><CB8B><EFBFBD>@aT<>%<06><>w<><77><EFBFBD>"<1D><>4rt<><74><EFBFBD><EFBFBD><EFBFBD>ߛ:x<78>)<29><><EFBFBD><EFBFBD>8)
fr|<7C><><EFBFBD>
; H]<5D><><EFBFBD>eW<65>E<EFBFBD>p*<2A><>ڃy}<7D><>y<EFBFBD> <0A><>f8<1F>G<EFBFBD>D$<24>&˂<>fqV<0F>)<29><EFBFBD>!DKDp<44><70> <0B><>FgWx <0A>5<EFBFBD>9<EFBFBD><39><EFBFBD><EFBFBD>G U<>?A<1F>?<13><>\:3t<33><74><EFBFBD><EFBFBD><07><><EFBFBD>u <00>$15.0 <00>15.0 <00>$15.0 <00>15.0 <00>$15.0 %PTH0 <helpdir>lvconcepts.chmUsing_Matrices.html<00><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><00><><00><><00><><00><><00><><EFBFBD><EFBFBD><00><><EFBFBD><EFBFBD><00><><00><><00><><00><><00><><00><><00><><00><><00><00><00><00><00><00><00><><00><><00><><00><00><00><00><><00><><00><><00><00><00><00><><00><><00><><00><00><00><00><00><00><00><><00><><00><><00><><00><><00><><00><><00><><00><><00><00><00><00><00><00><00><><00><><00><><00><00><00><00><><00><><00><><00><00><00><00><><00><><00><><00><00><00><00><00><00><00><><00><><00><><00><><00><><00><><00><><00><><00><><00><00><00><00><00><00><00><><00><><00><><00><00><00><00><><00><><00><><00><00><00><00><><00><><00><><00><00><00><00><00><00><00><><00><><00><><00><><00><><00><><00><><00><><00><><00><><00><><00><><EFBFBD><EFBFBD><00><><EFBFBD><EFBFBD><00><><00><><00><><00><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> FPHP1
'x<><78>V<EFBFBD>oE<18>f<EFBFBD><66><EFBFBD><EFBFBD>q<EFBFBD><71><EFBFBD><EFBFBD>RZ?2v<32>(.Qy<51><79>BHֈV<D688>
$፪PZ<><14><><05><>*<2A>= <20><1C>*qI<71>U $ Y<1C><07><1E><> <0B>%j<><6A>^<5E><><EFBFBD>>bL<62>*!ղF<D5B2><46><EFBFBD><EFBFBD><EFBFBD>~<7E><><<00> <20>W<1A><><03>m<EFBFBD><6D><EFBFBD>j<>"<00><12> l<><6C><07>_'<0E><>,<2C><>{+V<><56>5<>Ӵ&[<5B>1vM;<3B><><EFBFBD>T<07>+V_<56>$<24><19>>`<60>X<EFBFBD>6<07>U<EFBFBD>P<EFBFBD><50><EFBFBD><EFBFBD><EFBFBD><EFBFBD>y#<23>Yk<>D@<40>l<n<><6E><EFBFBD>.UM.<2E>&JT<4A>>0<><30><EFBFBD><EFBFBD><EFBFBD>!<21><12><>K<EFBFBD>H<EFBFBD>1v<31>%<25><>"lll<6C><6C><EFBFBD>a@PA<>v1d]<5D>[|FÇ<43> s<> EY<45><19><><EFBFBD>"y<>j<EFBFBD><6A>3,<2C>X <0C><>7g<37>f<><66><EFBFBD><EFBFBD><EFBFBD>s<0E><><EFBFBD><04><><EFBFBD><EFBFBD><1F><><EFBFBD><EFBFBD><EFBFBD>! <0B><><19><><EFBFBD><EFBFBD><10><>i<EFBFBD><69><EFBFBD>Ր<EFBFBD><D590>Áa<11>y<EFBFBD><79>oIRR<52><52><14>")H<> !K<0F> <20><><EFBFBD><EFBFBD><EFBFBD>KN^<5E><>Ʌ<EFBFBD>b浹<62><E6B5B9><EFBFBD><EFBFBD>-<2D>L9<4C>S<EFBFBD><53>>o<><6F> ~<7E><><EFBFBD>y<>ie<04>^<5E>!<21>N<EFBFBD><4E><EFBFBD><EFBFBD><EFBFBD>_+<2B>#<13>L<EFBFBD><1B>'0<>~<7E><><EFBFBD>qS<71>;;;;<3B>\<5C>|<7C>,\<5C>+&O%s!x<7F><78>f
{p K?<3F><><EFBFBD><EFBFBD>:*<2A>Lb<4C>H<><48><EFBFBD><EFBFBD>M<EFBFBD><4D>k*<2A><>(L'<27>X<EFBFBD><58><EFBFBD>F1<46>&i<>+<2B>5<EFBFBD><35><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><7F><EFBFBD><EFBFBD><EFBFBD>)<29><>M<13>0<EFBFBD><30><EFBFBD><EFBFBD><12><><EFBFBD>?b6g><3E><><EFBFBD><EFBFBD><EFBFBD>Yt1<74>Ϲ<1D>;<>`<60>+<2B>0
f<EFBFBD>a$<24>Ø<07><><EFBFBD>qo<71><6F><18><><EFBFBD>RXVB<56><42>
<EFBFBD>hg<68>c<EFBFBD><63><EFBFBD>g<EFBFBD>ڟ}<7D>h<7F><EEB1A2>#<23><0E><><EFBFBD> iG<69>/<2F>뷸} <0B><><0E><><EFBFBD>0<55>R<17>1<EFBFBD><31>L<>j<EFBFBD><18><><EFBFBD>!<16><10><><EFBFBD><EFBFBD><EFBFBD><얇]E<>wQ!k <09>R <20> O<>Ѿs~<7E><><EFBFBD><EFBFBD>@<40><11>z<EFBFBD>U<EFBFBD>q<><71><EFBFBD><EFBFBD><EFBFBD><EFBFBD>1<EFBFBD><31><EFBFBD><EFBFBD>C<EFBFBD><43><EFBFBD><0F><><EFBFBD><EFBFBD>h<EFBFBD><68>y=<3D><17>cR<63><52>E<EFBFBD>4<EFBFBD>q<EFBFBD><71><EFBFBD>w<18><><EFBFBD>X<EFBFBD>x<EFBFBD><78><EFBFBD>ҿ<17>٪M<D9AA>w<EFBFBD><77>3c><3E><><1B><><EFBFBD><EFBFBD><EFBFBD>>S<>P<EFBFBD>X<EFBFBD><58>Т<EFBFBD>{x<1F><1C>v<EFBFBD><17>z<EFBFBD><05> <0A>^G<><47>w<EFBFBD><77>e<><1B><>X<58>G<><47>p<70><7F><EFBFBD>$<24>x| <20>CC<43><43><EFBFBD>5<EFBFBD><35><EFBFBD>vt<76><74><EFBFBD>WO<<3C><><qQGp<47>:2x<32><78><EFBFBD><EFBFBD>oFڿg<DABF>k<07><><EFBFBD><EFBFBD>|<7C><>;<3B>e<EFBFBD><65> <09>EjF<6A>6O<36>ڜf<DA9C>\<5C><>=<3D><>i<EFBFBD>GP@1o`nJ<6E>
<EFBFBD><EFBFBD>J<EFBFBD><11><>u<EFBFBD><75>ڣ<EFBFBD>F~<7E>j}<7D>_}t<>.<2E><>t<EFBFBD>}<7D>7<37>,<2C><><EFBFBD><>;!n <0A>-<2D>kxs<78>K\/<2F>F<EFBFBD><46><EFBFBD><07><><EFBFBD><EFBFBD>i<>
<EFBFBD>I<EFBFBD><EFBFBD>:L<><4C>\<5C><>{/ BDHPeux<75>c``(<14>`<60><>P<EFBFBD><50><EFBFBD>I<EFBFBD>+<2B>!<21><><EFBFBD><59>7<03><><EFBFBD>a <20>( <14><><EFBFBD><EFBFBD>.<2E> <16>><3E><><EFBFBD><05>l<EFBFBD><1C><1C>9<>2- <0C><><EFBFBD>W)b<><62>z<EFBFBD>\<5C>8Se<53><<3C>e<19>2<> Localized,<00>@0<><30><EFBFBD><EFBFBD>TagNameLocalizeNI.LV.All.OperatorInfo12<><00>Y<00>OO_ImpTypesEnum.ctl=@PrimVIPolyVI ExpressVIXNode ExternalNodeType@2<><32><EFBFBD><EFBFBD>Path:<00><><EFBFBD><EFBFBD>OO_ImplementerID2.ctl@P ImplementerID @Numeric@@<01><><EFBFBD><EFBFBD>TermMap@0<><30><EFBFBD><EFBFBD>String@@<01><><EFBFBD><EFBFBD>TermTDs @NDims@ NPolySubVIsO<00><><EFBFBD>YEOO_ImplementerListEntry2.ctl*@PImplementerListEntry@@<01><><EFBFBD><EFBFBD> Implementers@ PrimResID @OpFlags6񽈂<>OO_ImplementerRow.ctl@P
Cluster@@<01><><EFBFBD><EFBFBD> EntryList @!PrimsOk @Vers2<00><>O<EFBFBD>VOO_CTLInfo2.ctl@P OverloadsPTH0NumericAddAdd.viq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A + c*``@
Real Scalar cy``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Aq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>c + Ay``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix A*``@
Real Scalar cx``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A + c6``@ Complex Scalar c<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>c + A<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A6``@ Complex Scalar cq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A + By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A + B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix APTH0-NumericComplexComplex To Cartesian.vi<00>``@ Complex Matrix Element@<00>NI_Matrix.lvlibComplexMatrix.ctl&@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix R + Iiy``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Ry``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix I``@
Real Matrix Element<<00>NI_Matrix.lvlibRealMatrix.ctl$@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Real Matrix R + 0iy``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix R}``@
Real Matrix Element:<00>NI_Matrix.lvlibRealMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Real Matrix I (0)PTH0)NumericComplexComplex To Polar.vi<00>``@ Complex Matrix Element@<00>NI_Matrix.lvlibComplexMatrix.ctl&@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix r*e^iQu``@
Real Matrix Element2<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Modulus rw``@
Real Matrix Element4<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
Argument Q``@
Real Matrix Element<<00>NI_Matrix.lvlibRealMatrix.ctl$@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Real Matrix r*e^i0u``@
Real Matrix Element2<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Modulus r{``@
Real Matrix Element8<00>NI_Matrix.lvlibRealMatrix.ctl @@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Argument Q (0)PTH0.NumericAbsolute ValueAbsolute Value.vio``@
Real Matrix Element,<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>|A|y``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Ao``@
Real Matrix Element,<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>|A|<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix APTH0(Numeric ExponentialExponential.vio``@
Real Matrix Element,<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>e^Ay``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Av``@ Complex Matrix Element.<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>e^A<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A<04>PTH0"NumericMultiply Multiply.viq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A * By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Aq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A * c*``@
Real Scalar cy``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Aq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>c * Ay``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix A*``@
Real Scalar cx``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A * B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A * c6``@ Complex Scalar c<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>c * A<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A6``@ Complex Scalar cPTH04NumericNatural LogarithmNatural Logarithm.vix``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ln(A)<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ln(A)y``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix A<04>PTH0&Numeric
Power Of X Power Of X.viv``@ Complex Matrix Element.<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A^n<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A `` @Power no``@
Real Matrix Element,<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A^ny``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix A `` @Power n<04>PTH0(Numeric Square RootSquare Root.viz``@ Complex Matrix Element2<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>sqrt(A)<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Az``@ Complex Matrix Element2<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>sqrt(A)y``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix A$PTH0"NumericSubtract Subtract.vix``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A - c6``@ Complex Scalar c<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A - B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix Ax``@ Complex Matrix Element0<00>NI_Matrix.lvlibComplexMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>c - A<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A6``@ Complex Scalar cq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A - By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Aq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A - c*``@
Real Scalar cy``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix Aq``@
Real Matrix Element.<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>c - Ay``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix A*``@
Real Scalar cPTH0
ComparisonEqualEqual.vi`` @!A = B?<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A`` @!A = B?y``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix ANPTH0'
Comparison Not Equal Not Equal.vi`` @!A != B?<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix B<00>``@ Complex Matrix Element<<00>NI_Matrix.lvlibComplexMatrix.ctl"@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Complex Matrix A`` @!A != B?y``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix By``@
Real Matrix Element6<00>NI_Matrix.lvlibRealMatrix.ctl@@<02><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Real Matrix AQ<07>LKMN(<00><01>x<EFBFBD><78><EFBFBD>MN<4D>@ <0C><>dB<64><16><07><>Aʂ5.0<02>U<><05>iTiJ
(K<> '<27>7d<10>Xৱ<58><E0A7B1><EFBFBD><EFBFBD> rd<07>Ϊ<EFBFBD><CEAA>+<2B><><EFBFBD><EFBFBD>~^5ٹ+<2B><>c s>h-<1E>/o<><6F><EFBFBD>{u<><75>I<EFBFBD> ܲv[K<> <0C><><EFBFBD><EFBFBD>%<25>'<27><><EFBFBD>X<EFBFBD> )<29>$<24>lS<>R<>f<EFBFBD><66><EFBFBD>%<25><>dl<17>ڡKj^<5E>R<EFBFBD><03>n <>%<25><>n<EFBFBD>m<EFBFBD>W<7F><57><EFBFBD>x<41>H<EFBFBD><48><><C690>cq?<3F><03>2<EFBFBD><32><EFBFBD>7ڛ"v-<2D><>Q<EFBFBD>E ~hW(1
wtΞ2<EFBFBD>L<EFBFBD>o&<26>@Щ_<D0A9><5F>KeH<00><00>Q<00><00>Z<00><00>c<><00><00><00><00>Segoe UISegoe UISegoe UI0RSRC
LVCCLBVWBP B0 4LIBNTLVSRhRTSG|CCST<01>LIvi<01>CONP<01>TM80<01>DFDS<01>LIds<01>VICDversGCPR<02>HLPP<02>HLPT<02>icl8<02>LIfp<02>FPHb<02>FPSE<02>VPDP LIbd BDHb4BDSEHVITS\DTHPpMUID<03>HIST<03>VCTP<03>FTAB<03><00><><EFBFBD><EFBFBD><00><><EFBFBD><EFBFBD><00><00><><EFBFBD><EFBFBD><00><00><><EFBFBD><EFBFBD><00><00><><EFBFBD><EFBFBD><00><><EFBFBD><EFBFBD><00><><EFBFBD><EFBFBD><<00><><EFBFBD><EFBFBD><01><00><><EFBFBD><EFBFBD><01><04><><EFBFBD><EFBFBD><07><><EFBFBD><EFBFBD> <08><><EFBFBD><EFBFBD>0 <09><><EFBFBD><EFBFBD>@
<EFBFBD><EFBFBD><EFBFBD><EFBFBD>P<00><><EFBFBD><EFBFBD>`<00><><EFBFBD><EFBFBD>t<00><><EFBFBD><EFBFBD><04><00><><EFBFBD><EFBFBD><04><00><><EFBFBD><EFBFBD><08><00><><EFBFBD><EFBFBD><08><00><><EFBFBD><EFBFBD> <00><><EFBFBD><EFBFBD> <00><><EFBFBD><EFBFBD> <00><><EFBFBD><EFBFBD> (<00><><EFBFBD><EFBFBD> <0A><00><><EFBFBD><EFBFBD> <0A><00><><EFBFBD><EFBFBD>@<40><00><><EFBFBD><EFBFBD>@<40><00><><EFBFBD><EFBFBD>@<40><00><><EFBFBD><EFBFBD>@<40><00><><EFBFBD><EFBFBD><EFBFBD>A<>ComplexMatrix.ctl